Degree 2 cohomological invariants of linear algebraic groups

نویسندگان

چکیده

The paper deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree $2$ coefficients $\mathbb{Q}/\mathbb{Z}(1)$, that is taking values in Brauer group. Our main tool \'etale cohomology sheaves on simplicial schemes. We get a description these for \emph{every} groups, particular non reductive imperfect

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for computing invariants of linear actions of algebraic groups up to a given degree

We propose an algorithm for computing invariant rings of algebraic groups which act linearly on affine space, provided that degree bounds for the generators are known. The groups need not be finite nor reductive, in particular, the algorithm does not use a Reynolds operator. If an invariant ring is not finitely generated the algorithm can be used to compute invariants up to a given degree.

متن کامل

On Certain Cohomological Invariants of Algebraic Number Fields

We see the Poincaré series from a cohomological point of view and apply the idea to a finite group G acting on any commutative ring R with unity. For a 1cocycle c of G on the unit group R×, we define a |G|-torsion module Mc/Pc, which is independent of the choice of representatives of the cohomology class γ = [c]. We are mostly interested in determining Mc/Pc where G is the Galois group of a fin...

متن کامل

Cohomological Invariants of Central Simple Algebras of Degree 4

In this paper, we prove a result of Rost, which describes the cohomological invariants of central simple algebras of degree 4 with values in μ2 when the base field contains a square root of −1.

متن کامل

Motivic construction of cohomological invariants

The norm varieties and the varieties with special correspondences play a major role in the proof of the Bloch-Kato Conjecture by M. Rost and V. Voevodsky. In the present paper we show that a variety which possesses a special correspondence is a norm variety. As an unexpected application we give a positive answer to a problem of J.-P. Serre about groups of type E8 over Q. Apart from this we incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2022

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2022.107059